Aliases: GL2(F3):3C22, CSU2(F3):3C22, SL2(F3).5C23, C4.25(C2xS4), (C2xC4).19S4, C4.6S4:5C2, C4.S4:6C2, C4.3S4:6C2, C4oD4.16D6, C4.A4:5C22, C22.8(C2xS4), (C2xQ8).24D6, C2.16(C22xS4), Q8.D6:3C2, Q8.6(C22xS3), (C2xSL2(F3)):7C22, (C2xC4oD4):4S3, (C2xC4.A4):5C2, SmallGroup(192,1482)
Series: Derived ►Chief ►Lower central ►Upper central
SL2(F3) — GL2(F3):C22 |
Generators and relations for GL2(F3):C22
G = < a,b,c,d,e,f | a4=c3=d2=e2=f2=1, b2=a2, bab-1=eae=dbd=a-1, cac-1=ab, dad=ebe=a2b, af=fa, cbc-1=a, bf=fb, dcd=c-1, ece=ac, cf=fc, ede=fdf=a2d, ef=fe >
Subgroups: 523 in 144 conjugacy classes, 27 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, SL2(F3), Dic6, C4xS3, D12, C3:D4, C2xC12, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C2xC4oD4, CSU2(F3), GL2(F3), C2xSL2(F3), C4.A4, C4oD12, D8:C22, Q8.D6, C4.S4, C4.6S4, C4.3S4, C2xC4.A4, GL2(F3):C22
Quotients: C1, C2, C22, S3, C23, D6, S4, C22xS3, C2xS4, C22xS4, GL2(F3):C22
Character table of GL2(F3):C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 6 | 6 | 12 | 12 | 8 | 1 | 1 | 2 | 6 | 6 | 12 | 12 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 3 | 3 | -3 | -1 | 1 | -1 | 1 | 0 | 3 | 3 | -3 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ14 | 3 | 3 | -3 | 1 | -1 | -1 | -1 | 0 | -3 | -3 | 3 | 1 | -1 | 1 | 1 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ15 | 3 | 3 | 3 | 1 | 1 | -1 | 1 | 0 | -3 | -3 | -3 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ16 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ17 | 3 | 3 | -3 | 1 | -1 | 1 | 1 | 0 | -3 | -3 | 3 | 1 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ18 | 3 | 3 | -3 | -1 | 1 | 1 | -1 | 0 | 3 | 3 | -3 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ19 | 3 | 3 | 3 | -1 | -1 | 1 | 1 | 0 | 3 | 3 | 3 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ20 | 3 | 3 | 3 | 1 | 1 | 1 | -1 | 0 | -3 | -3 | -3 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | -i | i | √3 | -√3 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | -i | i | -√3 | √3 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | i | -i | √3 | -√3 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | i | -i | -√3 | √3 | complex faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11 3 9)(2 10 4 12)(5 31 7 29)(6 30 8 32)(13 18 15 20)(14 17 16 19)(21 27 23 25)(22 26 24 28)
(2 11 10)(4 9 12)(5 8 30)(6 32 7)(13 19 18)(15 17 20)(22 27 26)(24 25 28)
(1 31)(2 5)(3 29)(4 7)(6 12)(8 10)(9 32)(11 30)(13 25)(14 23)(15 27)(16 21)(17 22)(18 28)(19 24)(20 26)
(1 18)(2 17)(3 20)(4 19)(5 24)(6 23)(7 22)(8 21)(9 15)(10 14)(11 13)(12 16)(25 32)(26 31)(27 30)(28 29)
(5 7)(6 8)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,31,7,29)(6,30,8,32)(13,18,15,20)(14,17,16,19)(21,27,23,25)(22,26,24,28), (2,11,10)(4,9,12)(5,8,30)(6,32,7)(13,19,18)(15,17,20)(22,27,26)(24,25,28), (1,31)(2,5)(3,29)(4,7)(6,12)(8,10)(9,32)(11,30)(13,25)(14,23)(15,27)(16,21)(17,22)(18,28)(19,24)(20,26), (1,18)(2,17)(3,20)(4,19)(5,24)(6,23)(7,22)(8,21)(9,15)(10,14)(11,13)(12,16)(25,32)(26,31)(27,30)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,31,7,29)(6,30,8,32)(13,18,15,20)(14,17,16,19)(21,27,23,25)(22,26,24,28), (2,11,10)(4,9,12)(5,8,30)(6,32,7)(13,19,18)(15,17,20)(22,27,26)(24,25,28), (1,31)(2,5)(3,29)(4,7)(6,12)(8,10)(9,32)(11,30)(13,25)(14,23)(15,27)(16,21)(17,22)(18,28)(19,24)(20,26), (1,18)(2,17)(3,20)(4,19)(5,24)(6,23)(7,22)(8,21)(9,15)(10,14)(11,13)(12,16)(25,32)(26,31)(27,30)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11,3,9),(2,10,4,12),(5,31,7,29),(6,30,8,32),(13,18,15,20),(14,17,16,19),(21,27,23,25),(22,26,24,28)], [(2,11,10),(4,9,12),(5,8,30),(6,32,7),(13,19,18),(15,17,20),(22,27,26),(24,25,28)], [(1,31),(2,5),(3,29),(4,7),(6,12),(8,10),(9,32),(11,30),(13,25),(14,23),(15,27),(16,21),(17,22),(18,28),(19,24),(20,26)], [(1,18),(2,17),(3,20),(4,19),(5,24),(6,23),(7,22),(8,21),(9,15),(10,14),(11,13),(12,16),(25,32),(26,31),(27,30),(28,29)], [(5,7),(6,8),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)]])
Matrix representation of GL2(F3):C22 ►in GL4(F5) generated by
3 | 0 | 0 | 0 |
0 | 2 | 0 | 2 |
4 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
3 | 0 | 3 | 0 |
0 | 1 | 0 | 1 |
0 | 0 | 2 | 0 |
0 | 3 | 0 | 4 |
3 | 0 | 2 | 0 |
0 | 2 | 0 | 4 |
1 | 0 | 1 | 0 |
0 | 2 | 0 | 2 |
0 | 2 | 0 | 4 |
3 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
2 | 0 | 2 | 0 |
0 | 4 | 0 | 0 |
1 | 0 | 3 | 0 |
0 | 2 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [3,0,4,0,0,2,0,0,0,0,2,0,0,2,0,3],[3,0,0,0,0,1,0,3,3,0,2,0,0,1,0,4],[3,0,1,0,0,2,0,2,2,0,1,0,0,4,0,2],[0,3,0,0,2,0,0,0,0,2,0,4,4,0,4,0],[2,0,1,0,0,4,0,2,2,0,3,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1] >;
GL2(F3):C22 in GAP, Magma, Sage, TeX
{\rm GL}_2({\mathbb F}_3)\rtimes C_2^2
% in TeX
G:=Group("GL(2,3):C2^2");
// GroupNames label
G:=SmallGroup(192,1482);
// by ID
G=gap.SmallGroup(192,1482);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,680,2102,451,1684,655,172,1013,404,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^3=d^2=e^2=f^2=1,b^2=a^2,b*a*b^-1=e*a*e=d*b*d=a^-1,c*a*c^-1=a*b,d*a*d=e*b*e=a^2*b,a*f=f*a,c*b*c^-1=a,b*f=f*b,d*c*d=c^-1,e*c*e=a*c,c*f=f*c,e*d*e=f*d*f=a^2*d,e*f=f*e>;
// generators/relations
Export