Copied to
clipboard

G = GL2(F3):C22order 192 = 26·3

3rd semidirect product of GL2(F3) and C22 acting via C22/C2=C2

non-abelian, soluble

Aliases: GL2(F3):3C22, CSU2(F3):3C22, SL2(F3).5C23, C4.25(C2xS4), (C2xC4).19S4, C4.6S4:5C2, C4.S4:6C2, C4.3S4:6C2, C4oD4.16D6, C4.A4:5C22, C22.8(C2xS4), (C2xQ8).24D6, C2.16(C22xS4), Q8.D6:3C2, Q8.6(C22xS3), (C2xSL2(F3)):7C22, (C2xC4oD4):4S3, (C2xC4.A4):5C2, SmallGroup(192,1482)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — GL2(F3):C22
C1C2Q8SL2(F3)GL2(F3)C4.6S4 — GL2(F3):C22
SL2(F3) — GL2(F3):C22
C1C4C2xC4

Generators and relations for GL2(F3):C22
 G = < a,b,c,d,e,f | a4=c3=d2=e2=f2=1, b2=a2, bab-1=eae=dbd=a-1, cac-1=ab, dad=ebe=a2b, af=fa, cbc-1=a, bf=fb, dcd=c-1, ece=ac, cf=fc, ede=fdf=a2d, ef=fe >

Subgroups: 523 in 144 conjugacy classes, 27 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, SL2(F3), Dic6, C4xS3, D12, C3:D4, C2xC12, C2xM4(2), C4oD8, C8:C22, C8.C22, C2xC4oD4, C2xC4oD4, CSU2(F3), GL2(F3), C2xSL2(F3), C4.A4, C4oD12, D8:C22, Q8.D6, C4.S4, C4.6S4, C4.3S4, C2xC4.A4, GL2(F3):C22
Quotients: C1, C2, C22, S3, C23, D6, S4, C22xS3, C2xS4, C22xS4, GL2(F3):C22

Character table of GL2(F3):C22

 class 12A2B2C2D2E2F34A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D
 size 1126612128112661212888121212128888
ρ111111111111111111111111111    trivial
ρ2111-1-1-111-1-1-1111-1111-1-111-1-1-1-1    linear of order 2
ρ311-1-11111-1-11-11-1-11-1-11-1-11-1-111    linear of order 2
ρ411-11-1-11111-1-11-111-1-1-11-1111-1-1    linear of order 2
ρ5111-1-11-11-1-1-111-1111111-1-1-1-1-1-1    linear of order 2
ρ611111-1-1111111-1-1111-1-1-1-11111    linear of order 2
ρ711-11-11-1111-1-111-11-1-11-11-111-1-1    linear of order 2
ρ811-1-11-1-11-1-11-11111-1-1-111-1-1-111    linear of order 2
ρ9222-2-200-1-2-2-22200-1-1-100001111    orthogonal lifted from D6
ρ1022-22-200-122-2-2200-1110000-1-111    orthogonal lifted from D6
ρ1122-2-2200-1-2-22-2200-111000011-1-1    orthogonal lifted from D6
ρ122222200-12222200-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ1333-3-11-11033-31-1-110001-11-10000    orthogonal lifted from C2xS4
ρ1433-31-1-1-10-3-331-1110001-1-110000    orthogonal lifted from C2xS4
ρ1533311-110-3-3-3-1-11-100011-1-10000    orthogonal lifted from C2xS4
ρ16333-1-1-1-10333-1-1-1-100011110000    orthogonal lifted from S4
ρ1733-31-1110-3-331-1-1-1000-111-10000    orthogonal lifted from C2xS4
ρ1833-3-111-1033-31-11-1000-11-110000    orthogonal lifted from C2xS4
ρ19333-1-1110333-1-111000-1-1-1-10000    orthogonal lifted from S4
ρ20333111-10-3-3-3-1-1-11000-1-1110000    orthogonal lifted from C2xS4
ρ214-400000-24i-4i0000020000002i-2i00    complex faithful
ρ224-400000-2-4i4i000002000000-2i2i00    complex faithful
ρ234-40000014i-4i00000-1--3-30000-ii3-3    complex faithful
ρ244-40000014i-4i00000-1-3--30000-ii-33    complex faithful
ρ254-4000001-4i4i00000-1-3--30000i-i3-3    complex faithful
ρ264-4000001-4i4i00000-1--3-30000i-i-33    complex faithful

Smallest permutation representation of GL2(F3):C22
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11 3 9)(2 10 4 12)(5 31 7 29)(6 30 8 32)(13 18 15 20)(14 17 16 19)(21 27 23 25)(22 26 24 28)
(2 11 10)(4 9 12)(5 8 30)(6 32 7)(13 19 18)(15 17 20)(22 27 26)(24 25 28)
(1 31)(2 5)(3 29)(4 7)(6 12)(8 10)(9 32)(11 30)(13 25)(14 23)(15 27)(16 21)(17 22)(18 28)(19 24)(20 26)
(1 18)(2 17)(3 20)(4 19)(5 24)(6 23)(7 22)(8 21)(9 15)(10 14)(11 13)(12 16)(25 32)(26 31)(27 30)(28 29)
(5 7)(6 8)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,31,7,29)(6,30,8,32)(13,18,15,20)(14,17,16,19)(21,27,23,25)(22,26,24,28), (2,11,10)(4,9,12)(5,8,30)(6,32,7)(13,19,18)(15,17,20)(22,27,26)(24,25,28), (1,31)(2,5)(3,29)(4,7)(6,12)(8,10)(9,32)(11,30)(13,25)(14,23)(15,27)(16,21)(17,22)(18,28)(19,24)(20,26), (1,18)(2,17)(3,20)(4,19)(5,24)(6,23)(7,22)(8,21)(9,15)(10,14)(11,13)(12,16)(25,32)(26,31)(27,30)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11,3,9)(2,10,4,12)(5,31,7,29)(6,30,8,32)(13,18,15,20)(14,17,16,19)(21,27,23,25)(22,26,24,28), (2,11,10)(4,9,12)(5,8,30)(6,32,7)(13,19,18)(15,17,20)(22,27,26)(24,25,28), (1,31)(2,5)(3,29)(4,7)(6,12)(8,10)(9,32)(11,30)(13,25)(14,23)(15,27)(16,21)(17,22)(18,28)(19,24)(20,26), (1,18)(2,17)(3,20)(4,19)(5,24)(6,23)(7,22)(8,21)(9,15)(10,14)(11,13)(12,16)(25,32)(26,31)(27,30)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11,3,9),(2,10,4,12),(5,31,7,29),(6,30,8,32),(13,18,15,20),(14,17,16,19),(21,27,23,25),(22,26,24,28)], [(2,11,10),(4,9,12),(5,8,30),(6,32,7),(13,19,18),(15,17,20),(22,27,26),(24,25,28)], [(1,31),(2,5),(3,29),(4,7),(6,12),(8,10),(9,32),(11,30),(13,25),(14,23),(15,27),(16,21),(17,22),(18,28),(19,24),(20,26)], [(1,18),(2,17),(3,20),(4,19),(5,24),(6,23),(7,22),(8,21),(9,15),(10,14),(11,13),(12,16),(25,32),(26,31),(27,30),(28,29)], [(5,7),(6,8),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)]])

Matrix representation of GL2(F3):C22 in GL4(F5) generated by

3000
0202
4020
0003
,
3030
0101
0020
0304
,
3020
0204
1010
0202
,
0204
3020
0004
0040
,
2020
0400
1030
0201
,
4000
0100
0040
0001
G:=sub<GL(4,GF(5))| [3,0,4,0,0,2,0,0,0,0,2,0,0,2,0,3],[3,0,0,0,0,1,0,3,3,0,2,0,0,1,0,4],[3,0,1,0,0,2,0,2,2,0,1,0,0,4,0,2],[0,3,0,0,2,0,0,0,0,2,0,4,4,0,4,0],[2,0,1,0,0,4,0,2,2,0,3,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1] >;

GL2(F3):C22 in GAP, Magma, Sage, TeX

{\rm GL}_2({\mathbb F}_3)\rtimes C_2^2
% in TeX

G:=Group("GL(2,3):C2^2");
// GroupNames label

G:=SmallGroup(192,1482);
// by ID

G=gap.SmallGroup(192,1482);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,680,2102,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^3=d^2=e^2=f^2=1,b^2=a^2,b*a*b^-1=e*a*e=d*b*d=a^-1,c*a*c^-1=a*b,d*a*d=e*b*e=a^2*b,a*f=f*a,c*b*c^-1=a,b*f=f*b,d*c*d=c^-1,e*c*e=a*c,c*f=f*c,e*d*e=f*d*f=a^2*d,e*f=f*e>;
// generators/relations

Export

Character table of GL2(F3):C22 in TeX

׿
x
:
Z
F
o
wr
Q
<